2012 Project X Physics Study

Large Area Picosecond Photo-Detectors

Andrey Elagin THE UNIVERSITY OF CHICAGOon behalf of the LAPPD collaboration

- Introduction
- LAPPD status
- Conclusions

June 16, 2012

Large Area Picosecond Photo Detectors (LAPPD)

Goals:

- Large area
- Picosecond timing
- Cheap

Applications:

- Picoseconds on large area
- Neutrinos
- Kaons
- Collider
- Muon cooling
- PET scan
- X-ray
- Neutrons

Super Module

- Thin planar glass body detector
- MCPs share single delay line anode
- Fully integrated electronics

Non-Cryogenic Liquid Detector

Particle Identification

Can we start talking about particles instead of jets?

LAPPD components

This talk

Electronics/Integration Center Card DataCtri DataCtri

Hermetic Packaging

MCP fundamentals

Many electron multipliers per unit area

- Glass substrate with micron pores
- Each pore acts as an electron multiplier
 - secondary electron emission (SEE)
 - high voltage applied
- Usually very expensive

Commercial MCP vs LAPPD MCP

Conventional Pb-glass MCP

Three functions in one glass plate

- Pores
- Resistive layer to provide electric field in the pore
- Pb-oxide layer serves as SEE layer

Incom glass substrate

Separate the three functions

- Pores (L/D~60)
- Resistive layer applied using Atomic layer deposition (ALD)
- SEE layer applied using ALD

2012 Project X Physics Study

MCP by Atomic Layer Deposition (ALD)

Beneq reactor for ALD @Argonne National Laboratory

Wide parameter space:

- relative composition of materials
- temperature
- different materials and thickness

Resistive coating ~100nm (ALD)

Emissive coating ~ 20nm (ALD)

Conductive coating (thermal evaporation or sputtering)

LAPPD vertical slice

The Frugal Tile

• Enclosed in vacuum (10⁻⁷ – 10⁻⁸ torr)

- Photocathode (aluminum at the moment; low quantum efficiency is compensated by high UV light intensity)
- Stack of MCP plates
 - Chevron geometry (8° bias angle)
 - ~1kV across each MCP
 - ~200V acros gaps
- Anode (delay line 1.6 GHz bandwidth)
- Readout with high bandwitdth scope or LAPPD made DAQ

Laser Testing Setup

@ Advanced Photon Source Division (APS) Argonne National Laboratory

Sub-picosecond laser

- Ti:Sapph 800nm; power ~800 mW
- pulse duaration O(10) femtoseconds
- 1KHz repetion rate
- Non-linear optics to produce
- 266nm UV light

Gain with the MCP stack

pair of 40 MOhm 33mm MgO plates

0.25

0.3

0.05

Pulse height, V×ns

MCP pulses and timing

Timing analysis approach

- Fit rising edge
- Use constant fraction discriminant

Questions

- Time resolution
- Position resolution

Time resolution determinants:

- 1) Signal to noise
- 2) Analog Bandwidth
- 3) Sampling rate
- 4) Signal statistics

Time and positon resolution

6 ps in $\Delta T \rightarrow 0.6$ mm in ΔX

See Monday talk at TOF section for more info

A.Elagin June 16, 2012

Hermetic packaging

- 1) Glass sidewall over the anode plane: solved by frit sealing
- 2) Top window over the full vertical slice: work in progress

Primary path for the top seal: indium seal

ANL & UChicago effort

glass body

Production Facility at SSL/UCB ceramic body

Parallel path: learn from industry (there are plenty vacuum sealed products around)

Electronics

- Analog card (PSEC4 chip) for every 6 channels:
 - waveform sampling
- Digital card (FPGA) for every 5 chips (30 channels):
 - charge, time, shape
- Central card (FPGA) 1 per supermodule:
 - time and position; system control, CPU interface

Scope-on-a-chip

Designed by Eric Oberla (UC grad student)

Real digitized traces from anode 20 GS/scope

4-channels (142K\$)

17 GS/PSEC-4 chip 6-channels, (\$130 ?!)

Demountable

"Sealed tube" prototype

- full vertical slice
- data taking using LAPPD made electronics

What's different from final design

- active pumping
- aluminun photo-cathode

Conclusions and Outlook

- Approaching picosecond domain on large area
- Demountable prototype shows very promissing performance
- Major challenges: photo-cathode & top seal
- Next steps:
 - many... photo-cathode and top seal are crucial
 - testing of the super-module with fully integrated DAQ
 - see our plans and progress here

http://psec.uchicago.edu/ and http://psec.uchicago.edu/blogs/lappd/

Back-up

Project X

Named Projects (large and not so)

